The Prague Texture Segmentation Datagenerator and Benchmark - Algorithms
optimized
for

The concise description of algorithms contains hyperlinks to further information (author, algorithms details, BIB entry, WWW external page).
The algorithm features are: f1 = classification (supervised segmentation), f2 = hiearchy result (manual selection), f3 = known number of regions, f4 = [reserved].
rohit.iiith's
LBP based texture segmentation
f1: 0
f2: 0
f3: 0
f4: 0
LBP based texture segmentation

List of uploaded results for 'LBP based texture segmentation' algorithm
   benchmark label version CS OS US ME NE O C CA CO CC I II EA MS RM CI GCE LCE BCE GBCE BGM SC SSC VD L AVI NVI NMI M ARI JC DC FMI WI WII NBDE
#Grayscale [normal] LBP based texture segmentation 33.93 9.21 20.82 29.86 30.35 37.91 28.34 54.47 65.81 70.27 34.19 6.89 64.55 53.03 9.50 66.19 19.65 16.96 45.84 43.15 65.81 59.11 57.82 23.26 64.15 9.76 30.10 62.20 18.00 52.25 48.06 62.96 65.07 64.47 70.56 10.51
#Grayscale [normal] LBP based texture segmentation 36.73 8.44 20.82 27.39 28.09 36.03 23.79 55.96 67.60 69.44 32.40 7.04 65.68 54.39 9.65 67.03 19.75 16.78 44.24 41.28 67.60 60.85 59.41 22.36 64.37 9.47 30.16 62.24 18.02 53.44 49.27 64.33 66.15 63.40 73.04 10.39
#Grayscale [normal] LBP based texture segmentation 39.71 9.23 14.27 30.62 31.00 24.95 25.58 59.79 70.52 74.47 29.48 4.66 70.01 57.73 8.05 71.21 22.13 16.93 41.00 35.80 70.52 62.83 63.21 20.95 69.76 8.71 28.29 67.44 13.67 59.20 52.25 67.80 68.64 69.92 69.10 8.57
Grayscale [normal] LBP based texture segmentation 42.56 7.56 14.27 29.38 29.66 24.20 23.17 61.02 71.92 74.41 28.08 4.71 70.96 59.05 7.64 72.03 22.22 16.87 39.59 34.25 71.92 64.34 64.44 20.27 70.46 8.50 27.97 67.98 13.25 60.55 53.81 68.95 69.65 69.78 70.99 8.32