The Prague Texture Segmentation Datagenerator and Benchmark - Algorithms
optimized
for

The concise description of algorithms contains hyperlinks to further information (author, algorithms details, BIB entry, WWW external page).
The algorithm features are: f1 = classification (supervised segmentation), f2 = hiearchy result (manual selection), f3 = known number of regions, f4 = [reserved].
scarpa's
TFR/KLD
BIB
WEB
DOC
f1: 0
f2: 1
f3: 0
f4: 0
G. Scarpa & M. Haindl & J. Zerubia:   A Hierarchical Finite-State Model for Texture Segmentation

It is an improved version of the TFR algorithm where the region gain has been changed by introducing a Kullback-Leibler Divergence (KLD) term modeling the region similarity in terms of spatial location.

List of uploaded results for 'TFR/KLD' algorithm
   benchmark label version CS OS US ME NE O C CA CO CC I II EA MS RM CI GCE LCE BCE GBCE BGM SC SSC VD L AVI NVI NMI M ARI JC DC FMI WI WII NBDE
Colour [normal] TFR/KLD 51.25 5.84 7.16 31.64 31.38 19.65 9.67 67.45 76.40 81.12 23.60 4.09 75.80 65.19 7.21 77.21 20.36 14.36 34.33 28.34 76.40 69.58 69.20 18.01 74.35 7.63 24.48 71.43 12.64 63.75 58.96 71.77 72.35 69.11 76.80 8.38