The Prague Texture Segmentation Datagenerator and Benchmark - Algorithms
optimized
for

The concise description of algorithms contains hyperlinks to further information (author, algorithms details, BIB entry, WWW external page).
The algorithm features are: f1 = classification (supervised segmentation), f2 = hiearchy result (manual selection), f3 = known number of regions, f4 = [reserved].
test's
SWA
version def_par
BIB
WEB
DOC
f1: 0
f2: 1
f3: 0
f4: 0
E. Sharon & M. Galun & D. Sharon & R. Basri & A. Brandt:   SWA algorithm

SWA algorithm segmentation by weighted aggregation, is derived from algebraic multigrid solvers for physical systems, and consists of fine-to-coarse pixel aggregation. Aggregates of various sizes, which may or may not overlap, are revealed as salient, without predetermining their number or scale.

List of uploaded results for 'SWA' algorithm
   benchmark label version CS OS US ME NE O C CA CO CC I II EA MS RM CI GCE LCE BCE GBCE BGM SC SSC VD L AVI NVI NMI M ARI JC DC FMI WI WII NBDE
Colour [normal] SWA def_par 27.06 50.21 4.53 25.76 27.50 33.01 85.19 54.84 60.67 88.17 39.33 2.11 66.94 53.71 6.11 70.32 17.27 11.50 50.96 45.18 60.67 51.56 55.84 24.20 69.05 9.75 21.56 70.86 13.68 51.67 43.43 58.77 61.69 79.03 51.05 10.34
Grayscale [normal] SWA def_par 13.43 38.22 5.05 40.06 41.97 42.12 77.01 47.75 55.64 83.86 44.36 2.85 61.18 46.73 7.25 65.00 23.45 16.88 57.63 51.05 55.64 45.68 49.07 28.93 63.03 11.64 27.13 64.46 16.26 43.91 36.68 52.61 55.17 70.51 45.59 11.73
BTF wood [exp.] [normal] SWA 44.87 19.97 26.60 8.76 9.15 12.79 30.30 68.01 75.61 80.28 24.39 3.07 75.08 66.63 5.76 76.46 9.51 3.52 31.37 25.39 75.61 71.25 72.04 13.82 78.20 4.28 13.16 84.27 8.79 71.44 63.23 76.66 77.76 77.95 79.88 6.26